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Abstract

This paper reports Part I of a two part effort that is
intended to delineate the relationship between reliabil-
ity and fault tolerant control in a quantitative manner.
Reliability analysis of fault-tolerant control systems is
performed using Markov models. Reliability properties
peculiar to fault-tolerant control systems are empha-
sized. As a consequence, coverage of failures through
redundancy management can he severely limited. It is
shown that in the early life of a system composed of
highly reliable subsystems, the reliability of the overall
system is affine with respect to coverage, and inade-
quate coverage induces dominant single point failures.
The utility of some existing software tools for assessing
the reliability of fault tolerant control systems is also
discussed. Coverage modeling is attempted in Part 11
in a way that captures its dependence on the control
performance and on the diagnostic rexolution.

1 Introduction

Highly reliable systems make use of redundancy to
achieve fault tolerance, due to limited reliability of

components or subsystems{‘ll. Utilization of analytic
redundancy[‘sl that provided by static and dynamic
relations among system variables, such as secondary
functions of effectors, virtual measurements, projec-
tions, etc. can further reduce the probability of exhaus-
tion of hardware in a cost-effective manner. Analytic
redundancy management of complex control systems,
however, involves considerable more risks in compari-
son with such schemes as majority voting, for decision
making is often based on residual signals formed by
the differences between noisy measurements and cal-
culated values of output variables based on inaccu-
rate models. Decision errors can be associated with
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uncertaiities on whether there is a subsystem failure,
which subsystem has failed, how severe is its effect.
whether it is necessary to take a drastic corrective
action. which action to take. In addition. the ques-
tion may also arise on whether there is adequate con-
trol relevant redunda.ncy[ISl and authority to allow re-
covery from the effect the failure. The dynamic and
closed-lcop nature, common to all control systems, is
the source for additional difficulties, such as temporary
mask of the effect of subsystem failures, the vagueness
in the definition of a system level failure in the context
of control performance, and the sometimes significant
processing requirement in supporting the redundancy
managetent.

Definitions suggested in [9] on fault and failure are
adopted with a slight extension. A fault is an unpermit-
ted deviation of at least one characteristic property or
variable of the system. A failure is a permanent inter-
ruption of a system’s ability to perform a required func-
tion uncer specified operating conditions. Note that a
failure can also be defined in the subsystem level. A
fault may or may not lead to a failure. Without loss
of generality, a subsystem failure is assumed to always
lead to he system failure unless a successful manage-
ment of redundancy ensues. A system level failure is
declared when faults or subsystem failures cause the
control performance of the system to fall below the pre-
scribed threshold. The performance threshold can be
set at Lwo (or more) different levels, each correspond-
ing to a specific reliability requirement. In aviation, for
example. one level can be set by the ability to carry out
a normel mission (or mission abort in terms of failure
probabiity), and another can be set by the ability to
merely maintain the system stability needed for safe
landing (loss of control in terms of failure probability).
This paser will treat different reliability requirements
in a uniied manner.

Reliabil 'ty is naturally a subjective concern in the
analysis and design of fault-tolerant control sys-
tems. Few publications that formally adderess this
issuel10 1L 13] have confined the scope of discussion
to reliability assessment for dynamic systems subject
to faults. Reliability is rarely regarded as an objective



criterion that guides a control system design in an inte-
grated manner. This predicment is due to the difficulty
in establishing a functional linkage Detween the over-
all system reliability, and the performance defined in
the conventional sense at the hottom: level for controls
and for diagnosis. The only attempt prior to this work
along this direction is reported in [11] where such a
linkage is established through coverage under the pos-
sibilistic formalization. The possibilistic formalization
provides flexible and usually more accurate descriptions
of uncertainties, but suffers from lack of corresponding
theoretical and numerical means for reliability analy-
sis. This paper is intended to address the reliability
issue of fault tolerant control systems in the more fa-
miliar probabilistic formalization so that existing tools
and methodologies of reliability analysis can be applied.
The paper is organized as follows. Section 2 presents
issues encountered in our endeavor through a reliabil-
ity analysis case study of a fault tolerant flight control
system. Section 3 discusses numerical techniques for
reliability assessment of fault tolerant systems with em-
phasis on how coverage enters reliability as a decision
risk factor. Several approximate relations are derived
to reveal the dependence of reliability to coverage in
simple forms.

2 A Case Study

To understand some of the reliability issues peculiar to
fault tolerant control systems, we start with a reliability
assessment case study of a fault tolerant flight control
system (FTFCS). A complete report on this case can
be found in [13]. Observations that follow should serve
to motivate a focused effort in coverage modeling of
fault tolerant control systems.
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Fig.]1 Effector functional dependency in a FTFCS

Fig.l shows the functional dependencies of subsystems
in the pitch/roll control effector block within a fault
tolerant fight control system[m]. The diagram re-
flects the available redundant lateral control author-

ities in ‘he system and the extent such redundancy
is utilized for subsystem failure recovery. Each effec-
tor channel contains an actuator subsystem which is
precedec by a group of three or four active identical
computer/effector interface subsystems, then followed
by a cottrol surface. Two of the effectors are consid-
ered as primary, and two as secondary. Every com-
puter /ef’ector interface subsystem blocks is of n-plex
architecture (group of n active identical subsystems).
Other blocks that precede the lateral-directional effec-
tor blocc but are not shown in the figure include a
computcr power supply block, an 1/O control module
block, a pilot command sensor block. and an aircraft
state sensor block. The block following this effector
block is a roll control effector block. The functional
dependency of the fault tolerant flight control system
altoget hir is described by a two-layer parallel-to-series
interconaection scheme.

The reliability indicator used in the following discussion
is the probability of loss of control denoted by Pproc.
Each small box in Fig.1 represents a subsystem, where
Ax (X == I, A, S) are the failure rates in terms of fail-
ures per hour. Under the assumption of low subsystem
failure rates, short mission time, and highly rigorous
maintenance requirements, constant failure rates are
approprate. Safety requirement for inner layer paral-
lel configuration (the n-plex computer/effector inter-
face sub:system) considered is l-out-of-n. Safety re-
quirement for the outer layer parallel configuration is
3-out-of-. This means that the three remaining effec-
tor channels must work in concert to accommodate a
failure in one effector channel.

The redundancy architecture shown in Fig.l1 does not
truely reflect how effector channel hardware is config-
ured. It must be understood as an effective redun-
dancy configuration which assumes that any anomaly
in an effector channel serious enough to warrant a con-
trol adastation or reconfiguration action for failure ac-
commocation can do so promptly and successfully. In
reality, 1owever, due to uncertainties in the model of
the syst=m to be controlled, uncertainties in the mod-
els of signals exerted on the system. and the limited
processing capability, considerable risks exist in mak-
ing a decision on a corrective action. These decision
risks must be taken into consideration in reliability as-
sessment. The risks encountered may include overly
slow or severe transients, false alarm, miss detection,
false identification, false reconfiguration, and lack or
exhaustion of redundancy. The notion of coverage is
now usel to account for such risks. It represents an at-
tempt to separate handling of failures from occurrence
of failures. Coverage defined in this context is highly
scenario dependent, highly time dependent, and most
of all, d:fficult to estimate. Coverage has been used as
a parameter to reflect the ability of a system to auto-
matically recover from the occurrence of a fault during



a normal system operat,ion[(’]:

Coverage

Once a decision is made however, the process of remov-
ing a subsystem or reconfiguring the ~ystem is generally
involved. This process, though fast in comparison with
a failure process, still takes time, and has been shown to
be generally non-exponentially distributed. Including
this process in a reliability model implies the creation

of a numerically stiff problem[“l].

Some results of reliability assessment for the system
of Fig.1 are now presented. All coverage values are
obtained based on test datall®l | which aggregate the
effects of decision errors. Since these values are fixed,
they are called static coverage values. A coverage value
of 0.99 is used when an actuator failure is accommo-
dated. The following table gives coverage of a com-
puter/effector interface subsystem failure.

Redundancy management 7 intact subsystems Coverage

Majority voting 4 0.992

Majority Voting 3 0.99

Comparing 2 0.89

Self-monitoring 1 0.75
Table 1

Coverage associated with surface danage is left as a
variable whose required value is yet to be determined
for the reason that it is where improvement is needed
most. A realistic estimate of static coverage can be ob-
tained by counting the number of unsuccessful surface
failure recoveries and taking the ratio with respect to
the total number of simulated surface impairment with
a full scale simulator. Note that such static coverage
values infer from a rather small sample of coverage data
to a general population, which do not address a spe-
cific process well, and therefore are inadequate for use
to make online decisions. Section 4 will discuss cover-
age modeling for more accurate coverage prediction.

The approximate parameter ranges in the Markov used
in our case study are now given. The overall system
reliability is required to achieve 1 — 1077

1

Subsystem failure rate Ax 10°% ~ 10™* hour”
Subsystem mean time to recover u; 10 3~ 107 hours
Variance of time to recover o; 107% ~ 107" hours
Mission time T 10° ~ 10° hours

Table 2

The above table reflects two common characteristics
of highly reliable fault tolerant systems: details due
to small failure probabilities cannot be arbitrarily ig-
nored, and recovery process is much faster than failure
process (107 times faster at least). As a result, one
is faced with solving a numerically stiff problem. For-
tunately. successful attempts have been made to effec-
tively deal with the stiff problem both theoretically and
numerically{l?* 4

Under a set of given failure rates and mission time, the
following results are obtained for the effector block

Probability(System recovers|Fault occurs).

Cq -4

Surface failure coverage  Approximate Ppoc

100% 10°1°

99% 1077

85% 106
Table 3

Though .1 has been observed that use of analytic redun-
dancy cen greatly increase the overall system reliabil-
ity (10" .0 10* times), imperfect coverage has clearly a
dominating effect on system reliability. It is found nu-
merically that Proc decreases linearly with increasing
surface < amage coverage up to an almost perfect cover-
age value. It is also found that reducing the redundancy
of the computer-effector interface from quadruplex to
triplex redundancy slightly increases the overall system
reliability!13],

These claims will be affirmed through analytical means
in the next section. The potential benefit of enhancing
coverage and the potential cost of additional hardware
redundaicy have now given us sufficient motivation to
investigate what factors affect coverage and in what
ways coverage is affected in a fault tolerant control sys-
tem.

3 Coverage in Reliability Assessment

In this section, the development of reliability model and
the nuinerical technique used for obtaining the results
of the p-evious section are presented. Several general
results regarding the critical role of coverage in relia-
bility assessment are then derived. Coverage modeling,
calculation, and its role in relating fault tolerant con-
trol to reliability will be discussed in the next section.

Reliability modeling can be regarded as a process of
identifving the structure function of a system com-
prised of N subsystems with positive random lifetimes.
The structure function defines a mapping: {0, 1} —
{0, 1}[” Reliability assessment can be regarded as a
process of evaluating the mapping, given state tran-
sition probabilities. A subsystem is in state “1” (in-
tact) before its lifetime and state “0” (failed) after its
lifetime. The fundamental assumption of a Markov
process is that the probability that a system will un-
dergo a transition from one state to another state de-
pends only on the current state of the system and not
any previous states the system may have experienced.
A Markov process where all state transition rates are
time-invariant is said to be homogeneous.

Keeping in mind the case study of the previous section,
the follewing assumptions are used in the subsequent
development of reliability models

(a) all 5'1bsystems are operational at the onset;

(b) failure probability of any given subsystem is 1—¢~
where A is the constant failure rate of that subsystem;
(c) a fai ure in any subsystem is independent of that in

At



all other subsystem failures;

(d) redundancy management restorcs the system op-
eration with a certain coverage following a subsystem
failure;

(e) an uncovered subsystem failure always leads to the
system failure (caused by decision errors, delays in re-
dundancy management, and the exhaustion of redun-
dancy as a special case);

(f) a covered subsystem [ailure obeys a recovery time
distribution with mean time g and variance o (
by transients following the removal of a failed subsys-
tem, or reconfiguration of control lav);

(g) all rates of recovery are orders of magnitude faster
than rates of subsystem failures;

(h) a failed subsystem remains failed during a mission
{no repair).

caused

In the following development, the parameter values
given in Table 2 are assumed. The calibration to a
particular time scale allows us to draw more useful con-
clusions for similar classes of applications. With the
framework set, we now demonstrate the role of cov-
erage through a progressively more complex reliability
model starting from the inner most layer of the two-
layer parallel-to-series interconnection scheme shown
in Fig.1. The rate diagram shown in Fig.2 represents
a system comprised of four computer-effector interface
subsystems with subscript “I” omitted for simplicity.
This represents a structure of a well-studied &(1)-out-
of-n(4) system (any combination of & operating subsys-
tems out of n independent subsystems will guarantee
successful operation of the system[T ). The complica-
tion here comes with the time varying recovery rates
and with the incomplete reconfiguration. Our main in-
terest lies with the role of coverage in the context of
fault tolerant control, and derive scme relations that
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Fig.2 Rate diagram of a 4-plex interconnection

It is important to keep in mind that corresponding to
each specific number of remaining intact subsystems,
there is a particular redundancy management scheme
with a specific failure coverage as shown in Table 1.
Until a correct decision is made on how this failure
is to be handled, which is captured in the conditional
probability which we call coverage, removal of the failed
subsystem or reconfiguration of the failed system will
not occur. The last redundancy management scheme

in Table 1 will not be needed for the moment, but will
enter the picture, when a second parallel layer is in
place. In Fig.2, states are denoted by circled two-digit
numbers. State name ij, ¢ > 0 indicates that there are
i intact s ubsystems and j failed subsystems. Subscript
0j always denotes an exit (death) state. The coeflicient
in front of the transition rate A represents the number
of subsystems that can fail in that transition. A tran-
sition 1o a recovered state is marked by transition rate
Aj(t). which, in terms of conditional transition time
distribution density function f;(¢), is given by

v - 28 mw - [ o

where ; is the total number of failed subsystems at

the time of the transition. Denote the mean time and
variance of this transition by p; and o, respectively.
Coverage associated with the transition out of the state
with j fuiled subsystems is denoted by ¢;. The values
of ¢; used for the system shown in Fig.2 are given in
Table 2 of the previous section. Aggregating all exit
states in 0 one with failure probability pp(t), the state-
space dimension of the Markov model is reduced to
eight. From the rate diagram, a system of ordinary
differential equations

Pit) = P)Q(t), P(0)=[10000000] (2)

can be ¢ erived[S], where

P(t) = [ pao(t) par(t) pso(t) p21(t) peo(t) pra(t) pro(t) po(t) ],

is the vector of probabilities of holding at state 7) at time
t, and Q(t) is the state transition rate matrix,

—4x g4 0 o o 0 0 1 - cg4A
0 =3NS AP(E) AL 0 Q 0 o 3N
0 0 ~3a 3Xey 0 0 0 {1 - ¢y)37
0 0 0 —2X = Aa(t) Aq(t) 0 0 27
0 0 0 o 5N 2Xeq U1 - ep]2A
0 0 0 s 0 =X = A\3(t) Aalt) X
o [ 5} o o Y A
0 o o o 0 [ 0 0

Let &(r,t) denote the solution to ®i(7,t) =
P(7)®(7,t), ®(r.7) = I. The system failure proba-
bility at the end of mission time 1" is given by pp(T') =
DIOVAC T

o @®
Fig.3 (a) C/E interface with recovery times removed;
(b) Paths to ignored death states



Civen the large disparity between failure rates (\) and
recovery rates (1/u;) as shown in Table 2. it i3 mean-
ingful to examine the condition under which the re-
covery times in the Markov model can be eliminated.
The rationale for this intent lies with the simplification
to a homogeneous Markov process. Suppose this elim-
ination is allowed, the Markov model will have been
simplified to that depicted in Fig.3(a). The sum of the
probabilities of the death states that have been elimi-
nated as a result of ignoring the recovery time is now
estimated. First a result on an approximate failure
probability is given.

Theorem 1. Assume (a) through (I} hold for a k-out-
of n system. In addition, cg < 1, and nANT << 1. Then
the system failure probability is dominated by

PH(T) = nAT(1 — co) (3)
if
L - og o (n - DAR[(L+AT)™ = 1]+ (1 + AT)™ — (1 + nAT)]
oo AAT(1 - 3L ) '
(4)
where

/l’:max{ll‘ls,u'h"'v :/1‘"—1}1 ﬂljo Vi>n-—Fk (5)

In this case the approximation error |pp(T) — p3(T)]
satisfles

P (T - PEATH < max (n= D ARIQ+AT) ™ —1]=(1 -2T)" =(1-nAT),
{8)

A key step to proving Theorem 1 is the application of
White's bounds!l by which it is required that state
transitions be considered as separate transitions repre-
senting disjoint events of traversing paths to exit states.
The rest of the proof involves emploving adjusting the
bounds using Binomial forms. Due to paper length
limit, proofs for all theorems are omitted.

Essentially, Theorem 1 states that if ¢y is not suffi-
ciently close to 1 in the sense defined above, the failure
probability of the Markov process becomes linear with
respect AT, and to 1 —¢g. The most important implica-
tion here is that in order to effectively take advantage
of redundancy, it is crucial to have the highest possi-
ble coverage for the first failure that occurs in the sys-
tem. As will be shown in the next section, this can be
achieved only through integrated design of the entire
system. To gain a sense on how far co must be from
| in order for the simple formula to be valid, values
given in Table 2 are used. With n =4, k=1 T =1,
p=10"%and A =107+
g1+ ATYY -1+ (1 + AT - (1 - daT))

1-cq»> = 0.00018
ANT(1 - 2AT)

must be satisfied. Using ¢g = 0.992 from Table 1,
L —co=1-=10.992 = 0.008 >> 0.00018. The following
approximation on the system failure has been obtained

PAT) =32%x 107

(naT)?

with an approximation error bounded by 6.0 x 10-8,

The inequality and error bound in Theorem 1 becomes
more anl more conservative as k becomes larger and
larger than 1, for more terms are added without bing
subtract.»d in completing the binomial forms. When
¢;'s are closer to 1, tighter bounds can be obtained by
consider ng k\c; as a fast rate relative to AN(1 — ¢;).

The nex. result states the condition on the elimination
of the recovery times. This is equivalent to setting pu; =
0, vi.

Theorem 2. Assume (a) through (h) hold for a k-out-
of-n system. In addition, cg < 1, nAT << 1. In addi-
tion, assume p(T) = nAT(1 — o) dominates pp(T).
Then th= recovery times can be ignored in the system
failure probability calculation with an error eg bounded
by

naul(1 + AT)* = 1), p=mar{p, 2. pina} (7)
where o, = 0, Vi > n — k. In this case,

o (n—1) p (1 +AT)" = 1 nAT<<1
e - e

n T IA%’.\I-

1 -co nAL. (8)

The proof of Theorem 2 is similar to that of Theorem
1. In fact the above inequality is implied by (4). To
see how easily this condition is satisfied, the right hand

t1-ca)lgide is calculated using again n =4, k =1, p = 0.001,

T =1.and A = 10™*, which leads to 1 —cg >> 3 107,
This is met if 1 —cg = 1075, or ¢o = 0.99999. In com-
parisou with the used value of ¢g = 0.992, the condition
for elim.nating recovery time is well satisfied. There-
fore, whenever the failure probability is dominated by
nAT(1 - co), elimination of recovery time is permissi-
ble. In the case of the system of Fig.2, pp(7’) has can
now be :xpressed analytically as

AAT < <1

po(T) = P(0)e?=T1, 4 (I+QaT)1.s = 4AT(1-co) = PA(T).

We now proceed to demonstrate the solution proce-
dure for the more complex two-layer parallel-to-series
interconnection scheme encountered in the case study
of Section 2. Since the achievable 1 — ¢y in our case
study satisfies the condition of (4), the effector block
failure probability can be approximated by, after the
application of (3) to both the inner and the outer lay-
ers of parallel interconnections

po(T) = ANTr(l —ch) + AaT(1—ci) + AsT(1—c3)l, (9)

where n (= 1,2,3, or 4) is the redundancy level in

the computer/effector interface portion. This formula
holds when 1 — c(;( >>AxT, X =1. A, S. In par-
ticular, improvement in coverage, even by a small per-
centage (from .99 to .999, for example) could reduce
the system failure probability by an order of magni-
tude. On the other hand. the level of redundancy in
the interface portion in each effector channel deserves
the consideration for optimization. The following table
summaties the contribution of the first term in (9) (the
interface portion) to system failure probability.



Redundancy Management Coverage ¢} Effect on Pp

4 Majority voting 0.992 AXT x 0.032

3 Majority Voting 0.99 42T x 0.030

2 Comparing 0.89 42T x 0.220

1 Self-monitoring 0.75 42T x 0.25
Table 4

The numbers in the last column are the products of
n and 1 — ¢} for different redundancy level n. Since
¢l is a decreasing function of n as shown in the table,
it turns out that the minimum appears at n = 3, i.e.,
the 3-plex interface architecture minimizes the system

failure probability.

Enhanced coverage has been shown to be the key to en-
hanced system reliability. There are applications, such
as civil aviation, where system reliability requirement
is as stringent as, for example. 1 —10 *”. Given the lim-
itation of individual subsystem reliability, the analysis
of this section concludes that coverage of first subsys-
tem failures in such systems must be raised to a value
extremely close to 1 to avoid inducing dominant sin-
gle point failures. At this extremely high coverage,
the approximate formulae given in this section is no
longer accurate, and the use of an claborate and rig-
orous nunierical tool such as WinSURE becomes nec-
essary. (For the data given in Tabie 2, however, the
failure probability calculation result of the above ap-
proximate formula is indistinguishable from the upper
and the lower bounds given by ASSISTCiteASSIST 4 q
SI,'RECiteSURE.) High coverage, at the same time, im-
poses extremely stringent requirement on redundancy
management. Such a requirement must be reflected at
the bottom levels on the control and diagnostic perfor-
mance requirements, which will be discussed in part I1
of the paper.

4 Conclusions

The main contributions of the paper are presented in
Theorems 1 and 2.

Theorem 1 states that when coverage is not sufficiently
high, the uncovered subsystem failures dominate the
system failure, and the system failure probability in-
creases linearly with decreasing coverage values. This
can significantly undermine the benefit of using redun-
dancy. Therefore, every effort should be made to en-
hance coverage of first subsystem failures. Theorem
2 states that when the uncovered failures are domi-
nating, the recovery times can be ignored if they are
several orders of magnitude faster than the subsystem
failure times on average. In this case, a numerically
stiff problem is avoided, and reliability analysis of a
complex system can be much simplified.

It is necessary to point out that the motivating force
of this work comes from the set goals of the on going

NASA/I'AA aviation safety program[g}. Though the
main co1clusions drawn in this paper shonld hold for
many areas of applications, the reader is cautioned to
pay attention to the conditions stated upon which the
conclusions are drawn, especially when they are em-
ployed t» applications of vastly different time scales.
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